Problemas de valor inicial ED

 Hernando Pérez Aguilar


En matemática, en el campo de las ecuaciones diferenciales, un problema de valor inicial (también llamado por algunos autores como el problema de Cauchy) es una ecuación diferencial ordinaria junto con un valor especificado, llamado la condición inicial, de la función desconocida en un punto dado del dominio de la solución. En física o en otras ciencias, es muy común que el modelado de un sistema utilice el problema de valor inicial para la resolución; en este contexto, la ecuación diferencial es una ecuación que evoluciona especificando cómo el sistema evoluciona con el tiempo, dadas las condiciones iniciales.

Definición

[editar]

Un problema de valor inicial es una ecuación diferencial

 con 

donde  es un conjunto abierto , junto con un punto en el dominio de 

,

llamada la condición inicial.

Una solución a un problema de valor inicial es una función  que es una solución a la ecuación diferencial y satisface

.

En muchas más dimensiones, la ecuación diferencial se reemplaza con una familia de ecuaciones , y  se ve como el vector . Más generalmente, la función desconocida  puede tomar valores sobre espacios dimensionales infinitos, tal como espacios de Banach o espacios de distribuciones.

Los problemas de valor inicial pueden extenderse a mayores órdenes utilizando sus derivadas de la misma forma que se utiliza la función, es decir .

Ejemplos

[editar]

Un ejemplo simple es resolver

Entonces el problema consiste en hallar la función  que las satisface.

Si se considera que , entonces

Reagrupando la ecuación tal que  está del lado izquierdo y  sobre el derecho

Si se integra en ambos lados (introduciéndose una constante desconocida ).

Eliminándose el ln

Siendo  una nueva constante desconocida, , así

Ahora para determinar el valor de , se utiliza la condición inicial  y sustituyendo para t = 0 e y =19:

entonces resulta que la solución final es .

Segundo ejemplo

La solución de

es

ya que,


Existencia y unicidad de solución

[editar]

El Teorema de Picard-Lindelöf establece condiciones que garantizan la existencia y unicidad de solución en un problema de valor inicial en un intervalo dado. En concreto, si f es continua en un dominio abierto que contenga a (t0y0) y verifica la condición de Lipschitz para la variable y, entonces podemos encontrar un intervalo para la variable temporal, t, donde existe una única solución del problema de valor inicial.

La demostración de este teorema se basa en reformular el problema como una ecuación integral sobre la que se puede aplicar el Teorema del punto fijo de Banach.

Bajo hipótesis más débiles, cuando la función f es continua pero no llega a ser Lipschitziana, se puede garantizar la existencia de solución localmente en tiempo, pero no su unicidad. Este resultado se puede encontrar, por ejemplo, en Coddington & Levinson (1955, Theorem 1.3) o en Robinson (2001, Theorem 2.6).

Ecuaciones Diferenciales con Problemas de valor inicial

Al considerar ecuaciones diferenciales ordinarias de primer orden definimos una condición inicial sobre la variable y como y(x_{0})=y_0, sin embargo, debemos ser cuidadosos al definir condiciones iniciales sobre ecuaciones de orden superior, pues en el caso de una ecuación diferencial ordinaria de orden n, la condición inicial está definida sobre la variable y y sus primeras n-1 derivadas de la siguiente forma

y(x_0) = y_0, \, y'(x_0) = y_1, \, \ldots , \, y^{(n-1)}(x_0) = y_n

Antes de empezar a calcular la solución de las ecuaciones diferenciales ordinarias de orden n es importarse preguntarse: ¿cómo sabemos que en efecto podemos encontrar la solución de una ecuación que cumpla con esa condición? A continuación veremos un teorema que nos permitirá determinar si una ecuación diferencial con un problema de valor inicial tiene solución.

Teorema (De existencia y unicidad)

Sean a_n(x), \, a_{n-1}(x), \, \ldots , \, a_1(x) , \, a_0(x) y g(x) funciones continuas en un intervalo I con a_n(x) \neq 0 para todo x \in I. Si x=x_0 es un punto de este intervalo, entonces existe una única solución y(x) para la ecuación

a_n(x) y^{(n)} + a_{n-1}(x) y^{(n-1)} + \ldots + a_1(x) y' + a_0(x) y = g(x)

con la siguiente condición inicial para la variable y y sus primeras n-1 derivadas

y(x_0) = y_0, \, y'(x_0) = y_1, \, \ldots , \, y^{(n-1)}(x_0) = y_n

Consideremos algunos ejemplos para entender la forma que deben tener las ecuaciones diferenciales para que cumplan con las condiciones de este teorema.

Anuncios
Informa sobre este anuncio

Ejemplos

Ejemplo 6

Consideremos la siguiente ecuación diferencial ordinaria con su respectivo problema de valor inicial

y'' - 4y = 12x

y(0)=4, \ \ y'(0)=1

Entonces, a_2(x)=1a_1(x)=0a_0(x)=-4, y g(x)=12x son sus coeficientes y cada uno de estos es una función continua en cualquier intervalo I que contenga a x_{0}=0.

Por lo tanto, existe una única solución y(x) para esta ecuación en cualquier intervalo I.

Ejemplo 7

Consideremos la siguiente ecuación diferencial ordinaria con su respectivo problema de valor inicial

5\textit{\Large e}^{x}y''' - 3\textit{\Large e}^{x+3}y' = 9\textit{\Large e}^{x}

y(1)=1, \ \ y'(1)=1, \ \ y''(1)=1

Entonces, a_3(x)=5\textit{\Large e}^{x}a_2(x)=0a_1(x)=- 3\textit{\Large e}^{x+3}a_0(x) = 0 y g(x)= 9\textit{\Large e}^{x} son sus coeficientes y cada uno de estos es una función continua en cualquier intervalo I que contenga a x_{0}=1.

Por lo tanto, existe una única solución y(x) para esta ecuación en cualquier intervalo I.

Ejemplo 8

Consideremos la siguiente ecuación diferencial ordinaria con su respectivo problema de valor inicial

\frac{6}{x}y'' + \frac{10}{x^2}y' - \frac{1}{x^3}y = 4\sqrt{x}

y(5)=-1, \ \ y'(5)=1

Entonces, a_2(x)=\frac{6}{x}a_1(x)=\frac{10}{x^2}a_0(x) = - \frac{1}{x^3} y g(x)= 4\sqrt{x} son sus coeficientes y cada uno de estos es una función continua en cualquier intervalo I de la forma (0,b) contenga a x_{0}=5.

Por lo tanto, existe una única solución y(x) para esta ecuación en cualquier intervalo I de la forma (0,b) contenga a x_{0}=5.




Comentarios

Entradas más populares de este blog

Coeficientes Indeterminados (Método de Superposición)

Tanque agitados